NEKBONE: Thermal Hydraulics

mini-application

Nekbone Release 2.1

May 15, 2013

Contents

Introduction to Nekbone 2
Getting Started 3
2.1 Setup. 3
2.2 Running A First Example 3
Parameters in Nekbone 5
3.1 SIZE File 5

3.1.1 Impact of Parameters. 6
3.2 datareaFile. 6

Details on Running and Editing Nekbone Examples 9

4.1 Editing the Nekbone Test Example 9
4.2 Compiling Nekbone 10
4.3 Understanding the Output 11

4.3.1 Platform timer Results 11

4.3.2 Conjugate Gradient & Flop Counts 11

4.3.3 Bandwidth Test 12
The Nekbone Code: Default Setup 13
5.1 The Default Setup 13
Nekbone & Nek5000 15
6.1 How Nekbone Represents Nekb000 15
6.2 MPI Communication within Nekbone 15

6.3 Optimization Opportunities 16

Chapter 1. Introduction to Nekbone

NEKBONE Release 2.1

Nekbone is captures the basic structure and user interface of the ex-
tensive Nek5000 software. Nek5000 is a high order, incompressible
Navier-Stokes solver based on the spectral element method. It has
a wide range of applications and intricate customizations available
to users. Nekbone, on the other hand, solves a Helmholtz equation
in a box, using the spectral element method. It is pared down to
include only the necessary features to compile, run, and solve the
applications found in the test/ directory. Since almost all prac-
tical applications are in the three dimensional space, the solver is
set to work with three dimensional geometries as default. Nekbone
solves a standard Poisson equation using a conjugate gradient itera-
tion with a simple preconditioner on a block or linear geometry (set
within the test directory of the simulation). Nekbone exposes the
principal computational kernel to reveal the essential elements of
the algorithmic-architectural coupling that is pertinent to Nek5000.

More information about nekbone can be found on the CESAR web-
site: https://cesar.mcs.anl.gov/content /software/thermal_hydraulics
or by contacting one of the developers.

Paul Fischer : fischer@mcs.anl.gov
Katherine Heisey: heisey@mcs.anl.gov

This document contains the quick start guide, an overview of the
more detailed parameters available to the user, and a more detailed
basis for the the connections between nekbone and Nek5000

Chapter 2. Getting Started

Nekbone requires the use of a F77 and C compiler. The currently
tested and supported compilers are IBM, Intel, PGI Portland, GNU
gfortran, although others may be used.

2.1 Setup

For the latest version of the nekbone code, please visit
https://cesar.mcs.anl.gov/content /software/thermal_hydraulics

After downloading the nekbone tarball, it can be unzipped and ex-
tracted in one step, if using the linux package, GNU tar commands:
tar -zxvf nekbone-2.1.tgz

This will create a nekbone-2.1directory populated with the source
and test example directories.

Nekbone’s test directory (nekbone-2.1/test) includes one example
case for running Nekbone. (nekbone-2.1/test/examplel)

Nekbone’s source code is found in nekbone-2.1/src/.

An example must have a SIZE file and a data.rea file. (found in
nekbone-2.1/test /examplel /) Each test is compiled and linked with
a makenek script. (Also in nekbone-2.1/test/examplel /) This script
performs a series of checks on the setup environment and compiler
flags before compiling the source code using makefile.template to
create the makefile.

For more details on this example and how to modify it, see section
4.1

2.2 Running A First Example

Change to this application’s directory:
cd nekbone-2.1/test/examplel

Check that the makenek script points to the correct source directory
and edit it, if needed. The default is set to:
SOURCE_ROOT='$HOME/nekbone-2.1/src’

Chapter 2 — Getting Started

Running serial

Running in Parallel

Cleaning up

Check that the compiler is set as desired. The default compiler is
set to a mpi wrapper for F77 and C. Change the F77 and CC param-
eters in the makenek script found in nekbone-2.1/test/examplel/

Compile the code using the makenek script to build and link:
./makenek exl More details on the makenek script and how to
modify it are found in Section 4.2.

A successful compilation of the code should result with this message
printed to the screen:

HHHH R R R
Compilation successful!
g

and a nekbone executable in the test/examplel/ directory.

To run the case in serial:
./nekbone ex1

To run the case in parallel the user can use the script provided,
nekpmpi. The user must supply the name of the example and the
number of processors to use, i.e:

./nekpmpi ex1 4

would run ex1 on 4 processors.

x* NOTE: to run the application in parallel, one must be sure that
the parameters set in the SIZE file accommodate the desired run
parameters(specifically, Ip and lelt). See section 3.1 for more details
on these parameters.

To interpret the output, please see Section 4.3

To clean up the source and test directory, removing the .o files, use:
./makenek clean;

Chapter 3.

Parameters in Nekbone

3.1 SIZE File

ldim

lxl,lyl, 21

ldimt

lelt

lelg

To run an application, much like the standard Nek5000 examples,
the user must run their experimental cases in a separate directory
from where the code is stored. Each case ran with the nekbone code
must have a SIZE file and a data.rea file in the running directory.

The SIZE file contains some basic parameters needed to create the
mesh and control the parameter space. Below is a brief description
of the parameters found in SIZE and how they can be changed to
fit the user’s needs. Most of the SIZE parameters are representa-
tive of the local processor counts as opposed to a global element
representation.

this is the dimension of the example. The code is written to work
with three dimensions. Changing this parameter would produce
unexpected results and is not recommended.

without being recompiled, this is the maximum polynomial degree
set as N = [zl — 1, where N is the polynomial degree. It can be
any number, even or odd, that is greater than or equal to two. On
some machine platforms, an advantage has been seen when using
even numbers. However, on others there has been no evidence that
either should be preferred. The parameters [x1, ly1, and [z1 should
always be equal.

this parameter is used in the include parameter files and should be
kept as is.

the maximum number of processors that can be used without re-
compiling the code. This parameter should be changed to reflect
the MAXIMUM number of processors the user plans to run with.

the maximum number of elements per processor that can be ran
without recompiling the code. This should reflect the MAXIMUM
number of elements per processor.

the total number of elements in the run. This is set to be (Ip x lelt)
and should not be changed. The code is currently set to find the best

6 Chapter 3 — Parameters in Nekbone

configuration across processors using this total number of elements
in each dimension space.

lelx,lely,lelz this is the total number of elements in the x direction. Currently
set to lelg. This parameter should not be changed.

common/dimn/ is the common block containing some of the most used variables in
the code. Most are initialized in the beginning of the code and are
equated to their counterparts named similarly. (i.e., ndim = ldim;
nxl = lxl; ect..) In general, these are the case specific parameters,
not the bounding sizes.

3.1.1 Impact of Parameters

The parameters set in the SIZE file define the problem space to
be evaluated. As stated above, lelt determines the number of total
elements(per proc.) in the geometry where as lz1,lyl,lz1 define
the polynomial order. As the figure 3.1 shows the polynomial or-
der really enriches the geometry by increasing the total number of
gridpoints.

Figure 3.1: The role of [x1. The right geometry has no (x1 defined
whereas the left has [x1,[y1,[z1 set to 7.

3.2 data.rea File

Along with the SIZE file, the data.rea file provides the user with a
few parameters to be changed at runtime. This will allow users to
alter certain variables without having to recompile the code.
EVERY EXAMPLE must have a data.rea file with these variables
set:

tfbrick 'This is the logical switch used to determine a brick geometry or a
linear block of elements. Setting .true. = ifbrick will allow the

3.2 data.rea File

1el0, 1el N

nx0, nx N

code to determine the ideal 3-D configuration of nelt elements and
np processors. Setting .false. = ifbrick will trigger the linear
geometry. The linear geometry yields itself to an optimal commu-
nication pattern since each element only needs to communicate to
2 other elements on either side of it. (Excluding the ends, which
would only have one neighbor) The brick configuration has a more
realistic communication pattern where the interior elements need to
communicate with 8 neighbors.

Figure 3.2: When .ifbrick. parameter is set to false a linear
geometry is created (left) and when set to true, a 3-D brick of
elements is created(right)

These two values are read in by nekbone and will control the range

of elements to be evaluated, per processor. Nekbone will run a bat-
tery of tests starting with iel0 through ielN elements per process.
Thus, setting 7el0 to 1 and el N to lelt will loop through tests with
1 element per processor to lelt elements per processor, as set in the
SIZE file. If desiring a test that only runs a single Poisson solve
on a specific element count, set 7el0 = 7elN. These values can be
changed at runtime and do not require nekbone to be recompiled
as long as telN <= lelt.

In the current version, these parameters are not used. Future
development will use these parameters to vary the polynomial order
of a run. Currently, these are defaulted to be the [x1 value set in
the SIZE file. These parameters will be read from the data.rea file
and control the range of polynomial order. The polynomial order
is set to be nxl — 1 where nx1 is set according to nz0 and nzN.
In coming revisions, setting nz0 = 2 and nxN = [zl will run a
series of tests from 2 through lz1 giving the full scope of polynomial
ordering up to the maximum value set in SIZE. The default setup
sets nx0 = neN = lx1, therefore only running with a constant nxl

Chapter 3 — Parameters in Nekbone

value equal to what is set in the SIZE file. Varying the polynomial
order will change the computational complexity by increasing the
number of grid points per element. Typical values span anywhere
from 4 to 14, although much larger values have been explored.

Chapter 4.

Details on Running and Editing

Nekbone Examples

Nekbone’s test directory (nekbone/test) includes one example case
for running nekbone. (nekbone/test/examplel)

4.1 Editing the Nekbone Test Example

Number of elements

Varying Polynomial
Order

Naming Examples

Geometry

number of CG

iterations

This example will run a battery of problems in a single submission.
Each problem increases in element count by the total number of
processors being ran. Thus, the problem sizes can range from one
element per process to lelt elements per process, where lelt is set in
the SIZE file. This can be changed to range from any beginning and
ending number of elements per processor by changing the param-
eters iel0 and ielN in the data.rea file. As described in 3.2, these
parameters control the range of tests to be ran as iel0 though iel N
as long as iel0 > 0 and el N <= lelt. The default sets iel0 to 1 and
1elN to lelt, thus running a total of lelt tests.

The default setup of nekbone runs with a set polynomial order equal
to Izl as set in the SIZE file (see Section 3.1). In future devel-
opment, Nekbone will be able to be configured to run a range of
increasing polynomial orders by setting the parameters nx() >= 2
and nzN <= lx1. See 3.2 for more details.

In the current set up, the name of the example is not important
and is not used. In future revisions, this might become integral to
the code. However, as a basic set up, we have used the SIZE and
data.rea parameters to specify the exact specifications. No mesh
data or input data is read in besides there two files.

Using the logical variable, ¢ fbrick, found in data.rea, the user can
control whether the geometry is set to be a brick or just a single
line of elements. ifbrick in this example is set to false, resulting
a the optimal communication pattern that a linear geometry lends
itself to.

In this example, the total degrees of freedom are
dof = np x nx1® x nelt < lp x lx13 x lelt.

The conjugate gradient solver is set to run for a maximum number

10 Chapter 4 — Details on Running and Editing Nekbone Examples

of iterations, niter. niter is set in src/drive.f and is can be in-
creased as the degrees of freedom increase in the example. A lower
niter value may result in non-converging results simply due not be-
ing allowed to iterate in the solver long enough for the degrees of
freedom to be resolved.

4.2 Compiling Nekbone

SOURCE_ROOT

F77 and CC

PPLIST

IFMPI

Optimization Flags

Nekbone is compiled by running the provided script, makenek. Mak-
enek allows the user to set the compiler, any compiler flags, opti-
mization flags, and other preprocession flags.

One of the important variables that is defined in the script is the
source directory path, SOURCE_ROOT=. This should be set to the
path to the source code. Since the tests are all ran from their own
directory, this path can be locally defined as
../../src
or more globably as the path from the user’s HOME/ directory. As
default, the path is set to
$HOME/nekbone-2.1/src
which assumes that the tarball was downloaded and unzipped in
the HOME/ directory.

F77 and CC are the compilers to be used. Nekbone has been tested
with GNU’s gfortran, PGI Portland, INTEL and a few others. Both
serial and parallel version have been used. The standard, mpif77
and mpicc are default in the test directory.

PPLIST sets pre-defined pre-processor symbols that are used within
nekbone. Currently, setting this variable to BG will enable some
optimizations specific to Blue Gene P platforms.

Uncommenting this variable sets IFMPI to false. As the name im-
plies, this would turn off MPI communication within nekbone and
enable a serial run. This should be toggled to false when using a
serial compiler or when wanting to run without MPI enabled.

The G variable is for any compiler flags the user wants to include. A
common setting is compiling with debugging turned on by setting
G = 7-g”. For PGI Portland serial compilers, adding -Ktrap=fp
will cause the test to exit when encountering any NaN values.

General optimization flags can be specified by setting the

OPT_FLAGS_STD variable as desired. This will set the optimiza-
tion level for a majority of the source files. If this is not specified,
the code is compiled with —O2 and with —O0 when in debugging

4.3 Understanding the Output 11

mode.

OPT_FLAGS_MAG is used to set the highest level of optimization,
which is used on some of the of the more intricate files. If this
variable is undefined, these files with be compiled with —O3 and
—(00 when in debugging mode.

Once the variables are defined as desired, running makenek in the
test example directory:

./makenek name_of_test

will compile and link the code to be ran. See section 2 for more de-
tails on running the example provided in nekbone-2.1/test/example.

4.3 Understanding the Output
4.3.1 Platform timer Results

When the platform_timer(ivrb) is turned on, the result of all plat-
form tests will be at the beginning of the logfile. This includes
all_reduce times, varying times of different matrix- matrix product
routines, and ping pong tests done on the platform ran.

4.3.2 Conjugate Gradient & Flop Counts

Nekbone writes to stdout the results of each conjugate gradient
sequence on increasing problem size.

At the beginning of each sequence, nekbone prints:
cg: 1iter rnorm
where iter should be 0, since the test is just beginning.

After niter iterations (set within src/drive.f of the nekbone source
code), a summary of the convergence is printed to stdout.

cg:iter rnorm alpha beta pap

If the conjugate gradient iteration converged, iter is less than niter
and rnorm should be close to the tolerance set.

After the conjugate gradient sequence is completed, the total flop
count is printed to the screen.

mflops flop-a flop.cg timel flops nelt np nxl

More detail is given in Section 5.1. Since the default implemen-
tation of nekbone is set to run increasing elements per processor,
np remains constant and nelt should increase from 1 to lelt (set in
SIZE). This is the number of elements per process. If iel0 and iel N
in data.rea (see 3.2) are not equal, nzl should reflect that as well.

12 Chapter 4 — Details on Running and Editing Nekbone Examples

4.3.3 Bandwidth Test

If the bandwidth bisection test is turned on, nekbone will print
the results of the gather-scatter routines using the crystal router
exchanges done on an increasing number of points per process.

np npts npoints etime "bandwidth"

Where

np is the total number of processors

npts is the points per process exchanged

npoints is the total number of points in this test (np x npts)
etime is the average time it took to exchange these points across
Processors.

This will test the rate of message transfers with increasing sized
messages of the total number of processes.

Chapter 5.
Setup

The Nekbone Code: Default

Nekbone solves the Helmholtz equation in a box using the spectral
element method. It partitions the computational domain into high-
order quadrilateral elements. Based on the number of elements,
number of processors, and the parameters of a test run, Nekbone
creates a decomposition that is either a 1-dimensional array of 3D
elements, or a 3-dimensional box of 3D elements. It evaluates a
Poisson equation on every time step iteration and provides an esti-
mate of realizable flops, as well as inter node latency and bandwidth
measures.

5.1 The Default Setup

Boundary
Conditions &
Preconditioning

Platform Timing
Tests

Poisson Evaluation

In order to ensure Dirichlet boundary conditions, a mask is applied
in each conjugate gradient iteration. For simplicity this mask zeros
out the first point on the first processor. This maintains a solvable
code while not complicating the it with an extravagant masking
mechanism. Similarly, the preconditioning step is the result of the
identity matrix applied to the vector.

The default application of this code is set to run a battery of tests
useful in profiling the platform and basic communication structure
of the code. The first set of tests are called in driver.f by:

call platform timer(iverbose)

The variable, iverbose, controls how much information is sent to
standard output and can be flagged with a 0, for not verbose, or
a 1 for verbose. These tests include ping-pong tests and all-reduce
tests to give relevant information about the platform being ran on.
Currently, this call is commented out to allow for short test runs.

After the platform timing tests, the Poisson equation evaluations
begin. An iterative conjugate gradient solve is performed on an in-
creasing number of elements per process from 2el0 to ielN, set in
the data.rea file. (See 3.2) The principle kernel of the code is the
w = A x p routine with has many opportunities for optimization.
Essentially, the bulk of this work is done through matrix-vector

14

Chapter 5 — The Nekbone Code: Default Setup

Counting FLOPS

Calculating
Bandwidth

products. These w = A * p evaluations are done on the local ele-
ments on each processor. To update across all processors, a nearest
neighbor communication must be executed. The conjugate gradient
evaluates iterate for a determined number of iterations, niter, set
in driver.f.

Inside the conjugate solver, the flops are counted and timed for
further analysis as the problem size grows. This counter is output
to the logfile for each problem size as:

mflops flops_a flops_cg time ’flops’ nelt np

where,for MPI processes running on rank 0,

mflops is the total number of flops divide by time_spent in solver
flops_a is the operations spent in the Ax=Db routines

flops_cg is the operation count spend in the conjugate gradient
time is the total time spend in the solver

nelt is the number of elements

np is the number of processors

nx1 is the value of nx1, polynomial order

Finally, the bandwidth of processors np can be tested with a call
to:

call xfer(np,cr_h)

Here an array of increasing size is exchanged and timed across pro-
cessors, averaged over 50 exchanges. This gives an idea of bisection
bandwidth capacity of a range of data sizes. It is essentially testing
the rate of message transfers with increasing sized messages, over
the total number of processors. The default setting has this call
commented out to speed up the overall time spent in any nekbone
case.

Chapter 6. Nekbone & Nek5000

6.1 How Nekbone Represents Nek5000

As described above, nekbone is a conjugate gradient solver with a
simple precondition implemented. Nek5000’s temperature solve is
a conjugate gradient iteration with multi-level point-Jacobi precon-
ditioner. Any Nek5000 application that spends a majority of time
in the temperature solver will very closely resemble a nekbone test
ran on a large, brick element count. We have found that Nek5000
runs at parallel efficiency at ~6,000-10,000 points per core. This
means that the total degrees of freedom (lelt x (213) of a nekbone
test should also follow this rule of thumb and one should expect
to see similar results as nekbone scales to large processor counts.
Also, both Nekb5000 and nekbone’s memory requirements scale as
lelt x (lz13).

A Nek5000 Case with natural convection at high Rayleigh num-
ber (Ra > 10'0) will spend around 82% of the CPU time in the
Helmholtz solve. Of this, 19% is spent in the precondition, which
is not yet in nekbone. This leave 63% of the run time spent in
calculations that are represented by the kernels found within nek-
bone. Since a principal challenge of exascale is to boost single-node
performance, nekbone focuses on the main kernel in question.

6.2 MPI Communication within Nekbone

The communication kernel used in the standard Nek5000 software
is the exact kernel used in this more basic code. nekbone commu-
nication is nearest-neighbor communication which is the majority
of what is found in the Nekb5000 application. Written primarily
in C and C preprocessor, the communication routines are found in
nekbone-2.1/src/jl/. The mini application accesses these rou-
tines to set up and exchange information across processors. The
code is a parallel code, utilizing the MPI standard. Most MPI rou-
tines are employed through a wrapper found in comm _mpi.f.

16 Chapter 6 — Nekbone & Nek5000

6.3 Optimization Opportunities

Nekbone provides multiple levels of optimization. Since the bulk
of the nekbone code focuses on the matrix-vector operations, this
is a section of the code that could be highly optimized. Already,
these routines have been optimized on most platforms common in
the current computing resources.

The gradient kernel include 3 matrix-vector calls on the same data
and the gradient-transpose kernel includes 3 matrix-matrix calls on
different data to produce one output.

